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(57) ABSTRACT

The present disclosure uses physiological data, ECG signals
as an example, to evaluate cardiac structure and function in
mammals. Two approaches are presented, e.g., a model-based
analysis and a space-time analysis. The first method uses a
modified Matching Pursuit (MMP) algorithm to find a noise-
less model of the ECG data that is sparse and does not assume
periodicity of the signal. After the model is derived, various
metrics and subspaces are extracted to image and characterize
cardiovascular tissues using complex-sub-harmonic-fre-
quencies (CSF) quasi-periodic and other mathematical meth-
ods. In the second method, space-time domain is divided into
a number of regions, the density of the ECG signal is com-
puted in each region and inputted into a learning algorithm to
image and characterize the tissues.

20 Claims, 19 Drawing Sheets
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NON-INVASIVE METHOD AND SYSTEM FOR
CHARACTERIZING CARDIOVASCULAR
SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Patent
Application No. 61/684,217, filed on Aug. 17, 2012, entitled
“NON-INVASIVE METHOD AND SYSTEM FOR CHAR-
ACTERIZING CARDIOVASCULAR SYSTEMS,” which is
incorporated herein by reference in its entirety.

BACKGROUND

The current algorithms employed in signal processing of
electrocardiographic (ECG) signals are rudimentary and have
limited diagnostic accuracy. In fact, validated and accepted
ECG scoring systems like the Selvester score have onlya 71%
accuracy in detecting a previous myocardial infarction when
compared to cardiac magnetic resonance (CMR) imaging and
the ECG is recognized as having significant limitations in
ruling in or ruling out an acute myocardial infarction. The
ability of the ECG to detect left ventricular hypertrophy and
other conditions is also extremely limited. In fact, the ECG
not recommended to be used to rule out left ventricular hyper-
trophy in patients with hypertension. We claim that analysis
of ECG data can be improved upon using techniques to iden-
tify and quantify phase space changes to localize, image, and
characterize architectural features and function of cardiovas-
cular and other mammalian tissues.

There are various time domain and frequency domain sig-
nal-processing techniques which are being used for the analy-
sis of physiological signals to obtain more detailed informa-
tion. While time domain techniques are often used, they alone
are incapable of quantitying certain fluctuation characteris-
tics of a number of pathologies related to physiological sig-
nals. For example, traditional methods for performing fre-
quency-domain analysis of surface ECG signals, such as the
Fourier transform, are limited since they do not address the
aperiodic random nature of biological and electromagnetic
noise. For example, complex ECG waveforms with large
variation in their morphologies have been shown to occur
with the development of arrhythmias. Dominant frequency
analysis on ECG data can be problematic since non-linear
dynamic systems can appear to generate random noise. Dis-
crete fast Fourier transforms and wavelet analysis have been
shown experimentally to be incapable of detecting determin-
istic chaos in the presence of strong periodicity which tends to
obscure the underlying non-linear structures.

BRIEF SUMMARY

The present disclosure generally relates to non-invasive
methods and techniques for characterizing mammalian car-
diovascular systems. More specifically, the present disclosure
relates to non-invasive methods that utilize electrocardio-
graphic (ECG) phase space data to localize, image, and char-
acterize architectural features and function of the myocar-
dium and cardiovascular tissues.

The present disclosure uses physiological data, ECG sig-
nals as an example, to evaluate cardiac structure and function
in mammals. However, it is also claimed that other physi-
ological data can similarly be used to image and characterize
other organ systems in mammals using a similar approach.
The present disclosure provides an improved and efficient
method to image and characterize the heart using a high-
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resolution ECG data. It is claimed that these ECG data can be
used to identify, localize, and characterize cardiovascular
tissues. ECG waveforms possess high-dimensional data with
complex nonlinear variability that cannot be efficiently cap-
tured by traditional modeling techniques. Two approaches,
namely model-based analysis and space-time analysis, are
used to study the dynamical and geometrical properties of
ECG data. The first method uses a modified Matching Pursuit
(MMP) algorithm to find a noiseless model of the ECG data
that is sparse and does not assume periodicity of the signal.
After the model is derived, various metrics and subspaces are
extracted to image and characterize cardiovascular tissues
using complex-sub-harmonic-frequencies (CSF) quasi-peri-
odic and other mathematical methods. In the second method,
space-time domain is divided into a number of regions (12
regions for ventricular tissue, see FIGS. 10A and 10B and 6
regions for atrial tissues); the density of the ECG signal is
computed in each region and inputted into a learning algo-
rithm to image and characterize the tissues.

As such, the present disclosure provides for a non-invasive
system and method whereby ECG measurements can be
taken and transformed to characterize and image architectural
features of cardiovascular and other tissues. Further, the
present disclosure provides a system and method to image
(inverse ECG problem) and localize architectural features
and function of cardiovascular tissues.

DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present disclosure will
hereinafter be described in conjunction with the following
drawing figures, wherein like numerals denote like elements,
and wherein:

FIGS. 1A and 1B show an overview of processes and
algorithms to obtain a phase space representation and to
derive a three-dimensional (3-D) model of the heart;

FIG. 2 shows the steps of the model-based analysis to
derive a noiseless model from ECG data using an MMP
algorithm;

FIG. 3 presents process of phase space transformation;

FIG. 4 illustrates the process of selecting the best dictio-
naries;

FIG. 5 illustrates model estimation process where sparse
linear expansion of selected atoms is used to mimic the ECG
signal;

FIG. 6 illustrates one embodiment of a method whereby
MMP can be used to generate a 3-D vectorgram, where the
blue trajectories are the raw ECG signal plotted in 3 dimen-
sions and red trajectories are the MMP model of the blue;

FIG. 7 shows a CSF trajectory derived from an MMP
model of the ECG;

FIG. 8A shows a 3-D model of a heart where abnormal
electrical/anatomical features are highlighted in red. F1G. 8B
is the representation of this data using a 17-segment cardiac
anatomical map in common use;

FIGS. 9A-9F present different dynamical behaviors of
Rossler system for different values of its parameter, c;

FIGS. 10A and 10B illustrate definitions of regions of the
heart;

FIG. 11 demonstrates the ability of the disclosed methods
to quantify left ventricular mass from only a high resolution
ECG signal. This Bland-Altman plot indicates that the quan-
tification of left ventricular mass by ECG using the methods
disclosed is comparable to that of cardiac magnetic resonance
(CMR) imaging, with clinically acceptable accuracy;

FIG. 12 demonstrates the ability of the disclosed methods
to quantify left ventricular fibrosis from only a high resolution
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ECG signal. This Bland-Altman plot indicates that the quan-
tification of left ventricular fibrosis by ECG using the meth-
ods disclosed is comparable to that of CMR late gadolinium
enhancement (LGE) imaging, with clinically acceptable
accuracy; and

FIG. 13 demonstrates the ability of the disclosed methods
to localize alterations in cardiac tissues, in this case hypertro-
phy/fibrosis, from only a high resolution ECG signal and the
methods disclosed. This three-by-three table indicates that
the localization by ECG using the methods disclosed is com-
parable to that of CMR.

DETAILED DESCRIPTION

FIGS. 1A and 1B illustrate a high-level overview of the
various processes and algorithms implemented by the present
disclosure to obtain a phase space representation and to derive
a 3-D model of the heart. Referring to FIG. 1A, there is
illustrated an operational flow diagram for the regional analy-
sis of myocardial perfusion. At 102, 100 to 700 or more
consecutive seconds of ECG data is gathered on each of single
12 lead or 3 lead orthogonal leads. At 104, the signal is
normalized and baseline wander are removed using a modi-
fied moving average filter. At 106, a Modified Matching Pur-
suit (MMP) algorithm may be used to find a noiseless model
of'the ECG data. At 108, delayed phase space reconstruction
is used to move the single or 3 lead or 12 lead ECG into a 3 or
higher dimensional space. At 110, the space-time domain is
divided into 12 regions or higher and the dynamical density of
the signal is computed for each region.

Dynamical signal density can be computed using non-
Fourier or Fourier n dimensional fractional integral summa-
tion across all ECG leads on the derived model over the scan
window. Typically the order of fractional integral could be
-1.5 or -2.5 or any irrational, complex or real number.

Referring back to 106, the flow also proceeds to 112, where
the modeled ECG is split into the low energy complex sub
harmonic subspace (CSF). At 114, delayed phase space
reconstruction is used to move the single or 3 lead or 12 lead
CSF ECG into a 3 or higher dimensional space. At 116, the
space-time domain is divided into 12 Regions or higher and
the density of the signal is computed for each region. At 118,
the outputs of 110 and 116 are use to as 24 quantities (or
higher) that are fed into a nested sinusoidal Gaussians to
generate 17 segments model for the regional analysis of myo-
cardial perfusion.

Referring to FIG. 1B, there is a process for generating a
genetic algorithm. At 150, any cardiovascular imaging
modality is input. At 152, specific image derived metrics such
as Left/right ventricular mass estimation, scar analysis using
late gadolinium enhancement from cardiac magnetic reso-
nance imaging. Alternatively or additionally, at 154, an ECG
Space-Time based analysis is input. At 156, an evaluation of
Space-Time density for different regions is performed. At
158, the output of 152 and/or 156 may be used to generate a
genetic algorithm. At 160, an imaging modality linked ECG
model is created.

Aspects of FIGS. 1A and 1B are described in more detail
below.

FIG. 2 illustrates the steps of the model-based analysis to
derive a noiseless model from ECG data using an MMP
algorithm. Step 204 shows the baseline removal step, step 206
represents the phase space transformation step, step 208 pre-
sents the dictionary selection step, step 210 illustrates the
model estimation step and step 212 demonstrates the sub-
space extraction step. In FIG. 2, at 202, N-dimensional ECG
is input to a modified moving average filter to remove the
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baseline wander from the data. The output then goes to a
phase space transformation process at 206 in which a dynami-
cally rich system (a system that can exhibit many different
dynamical behaviors at different values of its parameters) is
synchronized with a physiological signal, in this case ECG
data, to magnity its dynamical features. For example, Rossler
is a good choice as it exhibits various behaviors for different
values of its parameters. The defining equations of Rossler
system are as follows:

X=-y-2
y=x+ay

z=b+z(x—2¢)

where a, b, and ¢ are some constants. For fixed values of
a=b=0.1, Rossler system exhibits the following behavior for
different values of c.

TABLE 1
Value of ¢ Dynamical Behavior Phase Space
c=4 Period-1 Orbit FIG. 9.A
c=6 Period-2 Orbit FIG. 9.B
c=285 Period-4 Orbit FIG. 9.C
c=87 Period-8 Orbit FIG.9.D
c=13 Sparse Chaos FIG.9.E
c=18 Filled-in Chaos FIG. 9.F

The ECG data is synchronized with Rossler system and
then a semi-optimal state is identified that magnifies dynami-
cal features of the physiological signal under study, FIG. 3.

Inaccordance with FIG. 3, at 302, the ECG is synchronized
with a dynamical system. Next, at 304, a semi-optimal state
that magnifies the dynamical features of the ECG is found.
This creates a new ECG dataset with magnified features at
306. Synchronization refers to phase space based synchroni-
zation of the information of the ECG system to the Rossler
system. The subspaces that arise from the differences
between the synchronization of these two systems are the
magnifications of the dynamical features of the ECG. These
subspaces comprise the new ECG dataset.

Referring again to FIG. 2, at 208, the obtained new dataset
is then used to find the best dictionary(ies) that can linearly
span the input. Each dictionary, D, is a family of waveforms
D={o,lel} that is used to decompose the input. Various dic-
tionaries are now available such as Wavelet Packets, Cosine
Packets, Chirplets, and so on. In accordance with some imple-
mentations, complex exponential sinusoids and Time-Fre-
quency are used over complete dictionaries synchronized by
a dynamically-rich family of post-transient Rossler trajecto-
ries.

FIG. 4 illustrates the process of selecting the best dictio-
naries. At 402, different dynamical features, such as
Lyapunov exponent and correlation dimension, of the ECG or
other physiological signal is compared with a family of dif-
ferent dictionaries. At 404, those dictionaries that have most
similarity to the dataset is selected to be used for model
estimation, i.e. the member atoms of the selected dictionaries
form the set of atoms that will be used in MMP. The dynami-
cal features of the ECG are compared with all the dictionaries
and the dictionaries are selected that have the most similarity
with the data

Referring again to FIG. 2, at 210, the next step is to find a
sparse model (extracted from the selected dictionaries) for the
physiological signal under study. For example, MMP may be
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used, which is an iterative process that, at each step, chooses
the dictionary atom that best correlates with the signal. This
process continues until a pre-defined stopping condition
occurs, such as if the number of terms exceeds a threshold
and/or the distance of the model and the target in the search
space is smaller than a threshold. Finally, the coefficients of
the selected atoms are computed.

FIG. 5 sketches the process of model estimation using
MMP. At 502, the correlation of the ECG dataset with all the
atoms in the selected dictionaries is computed. This informa-
tion, along with the pre-evaluated cross correlation of atoms
(504) is used to pick the best atom in each iteration in order to
minimize a pre-defined cost function that quantifies a dis-
tance in a metric space, such as mean absolute error or mean
square error, between the model and the target waveform.
After the addition of each atom at 506, a stopping condition is
consulted at 508 to determine whether further iterations of the
algorithm are necessary. This stopping condition could take
into account factors such as the number of atoms already
present in the model and the fit of the model against the target
waveform. If the stopping condition has been satisfied at 508,
the algorithm proceeds to 510 to perform a calculation of the
coefficients of the atoms. These coefficients are reclusively
calculated using information captured during the iteration of
the algorithm in order to optimize the fit of the model against
the input waveform. The process begins with reading pre-
computed atom correlations and computing the correlations
between the input waveform and the atoms. Atoms are itera-
tively added until the stopping condition is satisfied, at which
point the coefficients are calculated

Returning to FIG. 2, at 212, different subspaces are
extracted from the derived model. Various subspaces, namely
CSF trajectory, quasi-periodic and chaotic subspaces, low/
high-energy subspace, and fractional derivative of the low/
high-energy subspace are extracted from the derived model;
however, possible subspaces that could be extracted are not
limited to these examples. Each of which represents a
dynamical abnormality in the tissue architecture, structure
and function.

The last 20% of the selected atoms are used to form a “low
energy subspace” signal corresponding to each of the leads.
These low energy signals can be called x(t), y(t), and z(t)
assuming 3 leads.

There are various time domain and frequency domain sig-
nal processing techniques used for the analysis of physiologic
signals to obtain more detailed information. CSF exist in
many physiological signals, not just the cardiac signals pre-
sented, and are likely indicative of other pathophysiological
processes not otherwise detectable using prior art methods.

3-D Visualization

The output obtained after applying the MMP algorithm on
the ECG or other physiological signal, can be represented as
a3-Dphase space plot, as shown in FIG. 6. The illustrated 3-D
phase space plot illustrates cardiac electrical conduction pat-
terns, and associated alterations in tissue architecture, struc-
ture and function. This invention can be used, for example, to
detect hypertrophy, ischemia, scar, abnormal electrical chan-
nel function (channelopathies) and other forms of inherited or
acquired heart disease in mammals. In addition, this method
can be used to assess the effects (positive and negative) of
various interventions that include medications, toxins, che-
motherapeutic agents, surgical procedures, and other inter-
ventional procedures such as ablation, pacing, shocks and
electrical therapies, and genetic therapies.

The 3-D phase space plot localizes the presence of CSF
related to altered tissue. For example, the CSF for the heart
can be measured as a time delay and as a 3-D trajectory in the
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atrial and ventricular sub-spaces. CSF trajectory is associated
with those components of the ECG not captured by the dic-
tionary, i.e. there is no linear combination of the atoms of the
selected dictionaries that can represent the CSF trajectory.
FIG. 7 shows a CSF trajectory derived from an MMP model
of an ECG.

Examples of the 3-D phase space plot are shown in FIGS.
8-10. FIG. 8A shows a 3-D model of a heart where abnormal
electrical/anatomical features are highlighted in red. F1G. 8B
is the representation of this data using a 17-segment cardiac
anatomical map in common use (see FIGS. 10A and 10B).
FIGS. 9A-9F present different dynamical behaviors of
Rossler system for different values of its parameter, c. FIGS.
10A and 10B illustrate definitions of regions of the heart.

The 3-D phase space plot of the present disclosure may be
displayed by any type of computing device, including, but not
limited to, desktop computers, workstation computers, server
computers, cloud computing devices, tablet devices, smart
phones, and mobile computing devices.

A methodology will now be described below for producing
output from an algorithm that correlates with clinical param-
eters describing tissue architecture, structure and function.
Descriptive attributes in that class include left ventricular
mass and fibrosis as measured using CMR LGE imaging. As
indicated in FIGS. 11 and 12, cardiac mass and fibrosis can be
reliably detected and quantified using the implementations of
the present disclosure. For example, the anatomic location of
these changes can also be reliably determined using the dis-
closed methods, as shown by the data in FIG. 13.

FIG. 11 provides data related to the blind performance of
the preceding formula for predicting left ventricular mass
from just a high resolution ECG signal, compared to CMR, a
method for assessing left ventricular mass. These data indi-
cate that the methods disclosed provide a left ventricular mass
value that is sufficiently close to the actual CMR value, to
support the use of ECG data analyzed using the methods
disclosed alone to quantify cardiac mass.

FIG. 12 provides data related to the blind performance of
the preceding formula for predicting fibrosis from just a high
resolution ECG signal, compared to CMR, a method for
assessing fibrosis, assessed as percent LGE. These data indi-
cate that the methods disclosed provide an estimate of fibrosis
that is sufficiently close to the actual CMR value, to support
the use of ECG data analyzed using the methods disclosed
alone to estimate the percent of cardiac fibrosis.

The algorithm utilizes space-time densities computed
using the space-time analysis method to create a predomi-
nantly time agnostic feature set representative of the dynam-
ics of the signal propagation through tissue. The space-time
metrics are then linked with clinical data sets, for example left
ventricular mass, using a genetic learning algorithm. The
subsequent result can then be used in independent data sets to
reliably characterize the tissues of interest as shown in FIGS.
11, 12 and 13. Exemplar formulas for the clinical parameters
related to these specific examples follow. It is explicitly noted
that the formulas below are being provided solely as
examples, and should not be construed as limiting the disclo-
sure, as recited in the claims, as variations, modifications, and
adaptations of the equations below to achieve the functions of
the present disclosure are considered to be within the scope of
the appended claims.

Example Formulas

Estimate of percent fibrosis as measured using CMR
LGE imaging=((cos A#((gauss((SD1-SD2)))))/
((gauss((gauss((SD3/(SD4*SD5))))))* (gauss
((cos A((gauss((SD6+(SD12/

(SD6*SDS))MMN))+(((gauss((gauss(SDT))))/
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((SD8*SD7)+(gauss(((gauss(SD9))+(gauss
((((SD10*SD8)+((SD3"2)*SD7*(gauss
(SD11))Y(SD1*SD2))))))))+(SD3+SD4+(SD6*
(gauss((SD2*SD4))))+((SD5*(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))
SD3)+(gauss((SD1-(SD3*SD8))))+(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))))-
((cos k((gauss((SD1-SD2)))))/((gauss((gauss
((SD3/(SD4*SD5))))))*(gauss((cos #((gauss
((SD6+(SD12/(SD6*SD5)))))))))—((gauss
((gauss(SD7))))/((SD&*SD7)+(gauss(((gauss
(SD9))+(gauss((((SD10*SD8)+((SD3"2)*SD7*
(gauss(SD11))))/(SD1*SD2)))))))))*gauss
(((SD3+SD4+(SD6*(gauss((SD2*SD4))))+
((SD5*(gauss(((SD7*SD3)/((SD2*SD6)-
(SD3*SD6))))))/SD3)+(gauss((SD1-
(SD3*SD8))))+(gauss(((SD7*SD3)/
((SD2*SD6)-(SD3*SD6)))))) 2+((cos h((gauss
((SD1-SD2)))))/((gauss((gauss((SD3/
(SD4*SD5))))))* (gauss((cos #((gauss((SD6+
(SD12/(SD6*SD5))))))))) 2—((gauss((gauss
(SD7)))/((SD8*SD7)+(gauss(((gauss(SD9))+
(gauss((((SD10*SDR)+((SD3"2)*SD7*(gauss
(SDL1)))/(SD1*SD2)))))))))"2)/(((gauss((gauss
(SD7)))/((SD8*SD7)+(gauss(((gauss(SD9))+
(gauss((((SD10*SDR)+((SD3"2)*SD7*(gauss
(SD11))Y(SD1*SD2))))))))+(SD3+SD4+(SD6*
(gauss((SD2*SD4))))+((SD5*(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))
SD3)+(gauss((SD1-(SD3*SD8))))+(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))))+
((cos k((gauss((SD1-SD2)))))/((gauss((gauss
((SD3/(SD4*SD5))))))*(gauss((cos #((gauss
((SD6+(SD12/(SD6*SD5))))))))))+(SD3+SD4+
(SD6*(gauss((SD2*SD4))))+((SD5*(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))
SD3)+(gauss((SD1-(SD3*SD8))))+(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6)))))) 2+
((cos k((gauss((SD1-SD2)))))/((gauss((gauss
((SD3/(SD4*SD5))))))*(gauss((cos #((gauss
((SD6+(SD12/(SDE*SDS)MM)N) " 2)Y

cos h(((gauss((gauss(SD7))))/((SD&*SD7)+
(gauss(((gauss(SD9))+(gauss((((SD10*SD8)+
((SD372)*SD7*(gauss(SD11))))/
(SD1*SD2)))))))))/cos k(((gauss((gauss(SD7))))/
((SD8*SD7)+(gauss(((gauss(SD9))+(gauss
((((SD10*SD8)+((SD3"2)*SD7*(gauss
(SD11))Y(SD1*SD2)))))))) 2/((SD3+SD4+
(SD6*(gauss((SD2*SD4))))+((SD5*(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))
SD3)+(gauss((SD1-(SD3*SD8))))+(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))))*
((cos k((gauss((SD1-SD2)))))/((gauss((gauss
((SD3/(SD4*SD5))))))*(gauss((cos #((gauss
((SD6+(SD12/(SD6*SD5))))))))) * gauss(((cos
h((gauss((SD1-SD2)))))/((gauss((gauss((SD3/
(SD4*SD5))))))* (gauss((cos #((gauss((SD6+
(SD12/(SD6*SD5)))))))))) " 3* gauss(((gauss
((gauss(SD7))))/((SD&*SD7)+(gauss(((gauss
(SD9))+(gauss((((SD10*SD8)+((SD3"2)*SD7*
(gauss(SD11))))/(SD1*SD2))))))))+(SD3+SD4+
SD6*(gauss((SD2*SD4))))+((SD5*(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))
SD3)+(gauss((SD1-(SD3*SD8))))+(gauss
(((SD7*SD3)/((SD2*SD6)-(SD3*SD6))))))+
(cos A((gauss((SD1-SD2)))))/((gauss((gauss
((SD3/(SD4*SD5))))))*(gauss((cos #((gauss
((SD6+(SD12/(SD6*SD5))))))))/((gauss
((gauss(SD7))))/((SD&*SD7)+(gauss(((gauss
(SD9))+(gauss((((SD10*SD8)+((SD3"2)*SD7*
(gauss(SD11))))/(SD1*SD2))))))))-((cos
h((gauss((SD1-D2)))))/((gauss((gauss((SD3/
(SD4*SD5))))))* (gauss((cos #((gauss((SD6+

(SD12/(SDE*SDSNMMINN)

SD=signal density

Estimation of left ventricular mass as measured using

CMR=((SD9+(SD4*(cos A(SD5))))/((gauss
(SD3))+(gauss(((SD1*SD10*SD7)/
((((SD1*SD9*SD10*SD11*SD4)—
SD11)-(SD9*SD10*SD12*SD7))-
((SD172)*SD10*SD35)))))+((((SD4+
(SD1*SD2)+(SD5*SD3)+(SD1*SD2*SD5))-
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SDR8)/(cos A(((gauss((SD2+(SD4/SD1))))—(cos
h((gauss((gauss(((SD1*SD3)+((-SD3)/
SD5)MININ*(SD2+(SD1*SD2)+(SD3/(SD2+
(SD&*SD3*(gauss(((SD2"2)/SD6))))+(gauss
(SD5))+(gauss((SD1/SD4))))))*((cos A(SD6))+
(cos A((gauss((cos #(SD7)))))+(cos A((((cos
h((gauss(SD6))))"2)+(cos A((gauss(SD6))))* (cos
h((gauss((gauss((gauss(SD6)))))))))+(cos
h((gauss(SD9))))))))-((SD9+(SD3*(cos
h(SD5))))/((gauss(SDS5))+(gauss
(((SD1*SD10*SD7)/
((((SD1*SD9*SD10*SD11*SD4)-
SD11)-(SD9*SD10*SD12*SD7))-
((SD172)*SD10*SD3))))))) 2*((SD3+
(SD1*SD2)+(SD5*SD3)+(SD1*SD2*SD35))-
SDR8)/(cos A(((gauss((SD2+(SD4/SD1))))—(cos
h((gauss((gauss(((SD1*SD3)+((-SD3)/
SD5)MININY/((SD2+(SD1*SD2)+(SD3/(SD2+
(SD&*SD3*(gauss(((SD2"2)/SD6))))+(gauss
(SD5))+(gauss((SD1/SD4)))))) 2+(SD2+
(SD1*SD2)+(SD3/(SD2+(SD8*SD3*(gauss
(((SD272)/SD6))))+(gauss(SD5))+(gauss((SD1/
SD4)))))) 3 *gauss(((SD3+(SD1*SD2)+
(SD5*SD3)+(SD1*SD2*SD5))-SD8)/(cos
h(((gauss((SD2+(SD4/SD1))))-(cos A((gauss
((gauss(((SD1*SD3)+((-SD3)/SD)NN))N)*
(SD2+(SD1*SD2)+(SD3/(SD2+(SD&*SD3*
(gauss(((SD272)/SD6))))+(gauss(SD5))+(gauss
((SD1/SD4))))))/((SD9+(SD3*(cos k(SD3))))/
((gauss(SD5))+(gauss(((SD1*SD10*SD7)/
((((SD1*SD9*SD10*SD11*SD4)-
SD11)-(SD9*SD10*SD12*SD7))-
((SD172)*SD10*SD3)))))))"2)))

SD=signal density

Ischemia of cardiac tissues is linked to the development of
physiological changes that could alter complex sub-harmon-
ics and results in variable and high dimensional changes. FIG.
7 illustrates one embodiment of a method whereby MMP is
used to generate a 3-D vectorgram to localize, image, and
characterize aberrant architectural features of the myocar-
dium based on CSF identification, quantification and local-
ization.

In accordance with the present disclosure, physiological
and pathophysiological features of tissues are modeled accu-
rately and effectively using fractional derivatives. In contrast,
classical integer derivative-based models capture these phe-
nomena only approximately or not at all. Traditional integer
order derivatives depend only on the local behavior of a
function, while fractional derivatives depend on the whole
history of the function. In this embodiment, there is utilized a
method for detecting beat to beat complex sub-harmonic
structures in the ECG based on digital differentiation and
integration of fractional order. Since these signals are math-
ematically modeled as a linear combination of the selected
atoms, they can be differentiated and integrated of fractional
order. Let X'(t), y'(t), and Z'(t) be their integer order derivatives
respectively, these derivatives and there ratios measure insta-
bility only at a local point of the signal and therefore are poor
measures of stability for long complex ECG signals with
significant beat-to-beat variability. An alternative to an inte-
ger derivative is the use of a fractional calculus to detect
abnormal CSF signals in a physiological signal based on its
past history.

There are two concepts regarding the low-energy compo-
nent subspace (made from the last 20% terms found by MMP)
that are interesting and useful. First, the fractional derivative
of this component can be noiselessly obtained, since it is a
linear combination of selected atoms, and this fractional
derivative can be useful to localize, image, and characterize
architectural features of tissues. In addition, there are some
useful fractional properties to consider. Thus suppose that
x(1), y(1), and z(t) are respectively the X, Y, and Z coordinates
ofthe low-energy component and let x*(t), y*(t), and z%(t) be
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their irrational fractional derivative of order o that can be any
real(or complex) number. Then the magnitude of these irra-
tional fractional derivatives can indicate instability when
large and positive. Consider the regions when the irrational
fractional derivatives are positive, in such regions, the low 5
energy re-entrant wavelets that signify alterations in tissue
architecture and, or function.
The phase space plot information cannot be easily super-
imposed on a 3-D representation of a given tissue since physi-
ological function is variable across individuals. To overcome 10
this problem, intrinsic phase space imaging does not use the
interference in the phase plane of interest. Noiseless sub-
spaces allow the recording of the phase of these waves. In
cardiac tissues the amplitude resulting from this interference
can be measured, however the phase of the orthogonal leads 15
still carries the information about the structure and generates
geometrical contrast in the image, thus the name phase-con-
trast imaging.
In phase-based imaging, phase-contrast takes advantage of
the fact that different bioelectric structures have different 20
impedances, and so spectral and non-spectral conduction
delays and bend the trajectory of phase space orbit through
the heart by different amounts. These small changes in tra-
jectory can be normalized and quantified on a beat-to-beat
basis and corrected for lead placement and the normalized 25
phase space integrals can be mapped to a geometric mesh
using a genetic algorithm to map 17 myocardial segments in
the ventricle to various tomographic imaging modalities of
the heart from retrospective data (exemplar formulas for 3 of
the 17 regions below). FIG. 13 provides data related to the 30
blind performance of localizing tissue abnormalities from
just a high resolution ECG signal, compared to CMR, an
accurate localization method. These data indicate that the
methods disclosed provide a reliable means to localize the
anatomic location of the tissue alteration. Thus, the disclosed 35
method can be used to assess the effects (positive and nega-
tive) of various interventions that alter cardiovascular tissue
architecture and, or function including medications, toxins,
chemotherapeutic agents, surgical procedures, and other
interventional procedures such as ablation, pacing, shocks
and electrical therapies, and genetic therapies.

basal anterior seament=cos 2(SD10)-gauss

(SD11*SD12*SDCSF1+
0.005778*SDCSF2*SD6*SD10*SDCSF3-
6.749* SDCSF4* (gauss(((((0.0735+
(0.3203*SDCSF5*(gauss((30.33*SD8*(gauss
(((SD8+((61.1*SDCSF6*SDCSF7)/((SDCSF8*
(gauss((9.666*SD1*SDCSF9*SDCSF10))))+
(SDCSF11*(gauss
((9.666*SD1*SDCSF9*SDCSF10))))+
(SDCSF8*SDCSF12*SDCSF6*SDCSF7*(gauss
((9.666*SD1*SDCSF9*SDCSF10)))))))-(gauss
((gauss(SDCSET))N)N))-(2.994*SD10))-
(17.03*(gauss((6.882*(gauss(((SD8+
((61.1*SDCSF6*SDCSF7)/((SDCSF8*(gauss
((9.666*SD1*SDCSF9*SDCSF10))))+
(SDCSF11*(gauss
((9.666*SD1*SDCSF9*SDCSF10))))+
(SDCSF8*SDCSF12*SDCSF6*SDCSF7*(gauss
((9.666*SD1*SDCSF9*SDCSF10)))))))-(gauss
((gauss(SDCSFT)))N))N)))/SD1)))*gauss(SD1))

mid inferolateral seament=gauss(7.44069511*SD1+

6*SD1*SD2+-2.51202217109399*SD3/SD4+
SD5*SD6/(SD7*SD8)-SD3*SD8*SD9-
0.8372177305*SD1*SD4)

apical inferior seament=gauss((SD2*SD3-

0.2868*SD3-0.2308*gauss(14.35*SD2-
9.859%SD4))/(SD1"2*((0.8889* ((((gauss((((SD3/
(SD1+(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*
(SD6/SD7))+(SD5*((~1*SD1)"2)*(SD6/
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(SD5*SD7))))-(SD1*SD3))))*(gauss
((SD872))))+(((gauss((SDCSF4/(gauss(((SD9+
SDCSF10)-1.959))))))*(gauss((SD10*(gauss
(SDCSF12))*((gauss((((SDCSF10+(13.62*
(gauss(SDCSF12))))-1.365)/SDCSF4)))/
SDCSF2)))))*(gauss(((SD1—-(gauss((((SD3/
(SD1+(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*
(SD6/SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD5*SD7)))-(SD1*SD3)))))/(SD6*(gauss
((SD872))))))))/ (gauss(SD8)))+(0.8999*(gauss
(((((SDCSF8+SD11)-12.05)-
(SD1*SD12*SDCSF1))-(12.93*SD1*SD12))/(-
5.393-SD5))))))/1.8)+((SD1*((((gauss((((SD3/
(SD1+(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*
(SD6/SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD5*SD7))))-(SD1*SD3))))*(gauss
((SD872))))+(((gauss((SDCSF4/(gauss(((SD9+
SDCSF10)-1.959))))))*(gauss((SD10*(gauss
(SDCSF12))*((gauss((((SDCSF10+(13.62*
(gauss(SDCSF12))))-1.365)/SDCSF4)))/
SDCSF2))))*(gauss(((SD1-(gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*(SD6/
SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD5*SD7)))-(SD1*SD3)))))/(SD6*(gauss
((SD872))))))))/ (gauss(SD8)))+(0.8999*(gauss
(((((SDCSF8+SD11)-12.05)-
(SD1*SD12*SDCSF1))-(12.93*SD1*SD12))/
(0.393-SD5))))))/1.8))/SD8&)+((35.21*SDCSF2*
((((gauss((((SD3/(SD1+(SD1*SD5)))+(1.764e-
6*SD1*(SD5"2)*(SD6/SD7))+(SD5*
((-1*SD1)"2)*(SD6/(SD5*SD7))))-
(SD1*SD3))))*(gauss((SD8"2))))+(((gauss
((SDCSF4/(gauss(((SD9+SDCSF10)-
1.959))))))* (gauss((SD10*(gauss(SDCSF12))*
((gauss((((SDCSF10+(13.62*(gauss
(SDCSF12))))-1.365)/SDCSF4)))/SDCSF2))))*
(gauss(((SD1-(gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*(SD6/
SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD5*SD7)))-(SD1*SD3)))))/(SD6*(gauss
((SD872))))))))/ (gauss(SD8)))+(0.8999*(gauss
(((((SDCSF8+SD11)-12.05)-
(SD1*SD12*SDCSF1))-(12.93*SD1*SD12))/(-
5.393-8SD5))))))/1.8))/SD5)+(~
5997000*SDCSF3*((((gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5 "2)*(SD6/
SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD5*SD7))))-(SD1*SD3))))*(gauss
40 ((SD872))))+(((gauss((SDCSF4/(gauss(((SD9+
SDCSF10)-1.959))))))*(gauss((SD10*(gauss
(SDCSF12))*((gauss((((SDCSF10+(13.62*
(gauss(SDCSF12))))-1.365)/SDCSF4)))/
SDCSF2))))*(gauss(((SD1-(gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*(SD6/
SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD5*SD7)))-(SD1*SD3)))))/(SD6*(gauss
((SD872))))))))/ (gauss(SD8)))+(0.8999*(gauss
(((((SDCSF8+SD11)-12.05)-
(SD1*SD12*SDCSF1))-(12.93*SD1*SD12))/(-
5.393-8D5))))))/1.8))/SD11))+((0.8889*
((((gauss((((SD3/(SD1+(SD1*SD5)))+(1.764e-
50 6*SD1*(SD5 "2)*(SD6/SD7))+(SD5*
((-1*SD1)"2)*(SD6/(SD5*SD7))))-
(SD1*SD3))))*(gauss((SD8"2))))+(((gauss
((SDCSF4/(gauss(((SD9+SDCSF10)-
1.959))))))* (gauss((SD10*(gauss(SDCSF12))*
((gauss((((SDCSF10+(13.62*(gauss
55 (SDCSF12))))-1.365)/SDCSF4)))/SDCSF2))))*
(gauss(((SD1-(gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*(SD6/
SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD5*SD7)))-(SD1*SD3)))))/(SD6*(gauss
((SD872))))))))/ (gauss(SD8)))+(0.8999*(gauss
60 (((((SDCSF8+SD11)-12.05)-
(SD1*SD12*SDCSF1))-(12.93*SD1*SD12))/
(0.393-SD5))))) )/ 1.8)+((SD1*((((gauss((((SD3/
(SD1+(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*
(SD6/SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD5*SD7))))-(SD1*SD3))))*(gauss
((SD872))))+(((gauss((SDCSF4/(gauss(((SD9+
SDCSF10)-1.959))))))*(gauss((SD10*(gauss
(SDCSF12))*((gauss((((SDCSF10+(13.62*
(gauss(SDCSF12))))-1.365)/SDCSF4)))/

45

65
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SDCSF2))))*(gauss(((SD1-(gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*
(SD6/SD7))+(SD5*((-1*SD1)"2)*

(SI %/(SD5*SD7))))-(SD1*SD3)))))/(SD6*
(gauss((SD872))))))))/(gauss(SD8)))+(0.8999*
(gauss((((((SDCSF8+SD11)-12.05)—
(SD1*SD12*SDCSF1))-(12.93*SD1*SD12))/(-
5.393-8D5))))))/1.8))/SD8)+((35.21*SDCSF2*
((((gauss((((SD3/(SD1+(SD1*SD5)))+(1.764e-
6*SD1*(SD5"2)*(SD6/SD7))+(SD5*
((-1*SD1)"2)*(SD6/(SD5*SD7))))—
(SD1*SD3))))*(gauss((SD8"2))))+(((gauss
((SDCSF4/(gauss(((SD9+SDCSF10)-
1.959))))))* (gauss((SD10*(gauss(SDCSF12))*
((gauss((((SDCSF10+(13.62*(gauss
(SDCSF12))))-1.365)/SDCSF4)))/SDCSF2))))*
(gauss(((SD1-(gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*(SD6/
SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD3*SD7))))-(SD1*SD3)))))/(SD6*(gauss
((SD82)))))))/ (gauss(SDR)))+(0.8999* (gauss
((((((SDCSF8+SD11)-12.05)-
(SD1*SD12*SDCSF1))-(12.93*SD1*SD12))/(-
5.393-8SD5))))))/1.8))/SD3)+((-

5997000* SDCSF3*((((gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*(SD6/
SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD3*SD7))))-(SD1*SD3))))*(gauss
((SD872))))+(((gauss((SDCSF4/(gauss(((SD9+
SDCSF10)-1.959))))))* (gauss((SD10*(gauss
(SDCSF12))*((gauss((((SDCSF10+(13.62*
(gauss(SDCSF12))))-1.365)/SDCSF4)))/
SDCSF2))))*(gauss(((SD1-(gauss((((SD3/(SD1+
(SD1*SD5)))+(1.764e-6*SD1*(SD5"2)*(SD6/
SD7))+(SD5*((-1*SD1)"2)*(SD6/
(SD3*SD7))))-(SD1*SD3)))))/(SD6*(gauss
((SD82)))))))/ (gauss(SDR)))+(0.8999* (gauss
((((((SDCSF8+SD11)-12.05)-
(SD1*SD12*SDCSF1))-(12.93*SD1*SD12))/
(-3.393-8SD5))))))/1.8))/SD11))"3))

SD=signal density
SDCSF=signal density complex-sub-harmonic-frequencies

In the second method, space-time domain is divided into a
number of regions (for example, 12 regions for ventricular
and 6 regions for atrial tissues); the density of the baseline-
removed ECG signal is computed in each region. These val-
ues contain specific information about the non-linear vari-
ability of the physiological signal, specifically the ECG
signal, that are linked to an alteration in tissue architecture
and, or function. The calcium ion (Ca++) is a universal intra-
cellular messenger. In muscle, Ca++ is central to contractile
force activation. Ca++ is also important for temporal and
spatial alterations in action potentials, modulation of contrac-
tile function due to systemic resistance (blood pressure),
energy supply-demand balance (including mitochondrial
function), cell death (apoptosis), and transcription regulation.
Ithas been hypothesized that Ca++-dependent ion pump vari-
ability occurs aperiodically in pathological cardiac myocytes,
this creates significant microvolt beat-to-beat variations in the
ECG signals and possibly other physiological signals (e.g.,
arterial pulse waveform). Variations in the ECG or other
physiological signal can be measured and localized by link-
ing the space time density structures to tissues of interest (for
example, the 12 ventricular and 6 atrial regions). It should be
noted a simple derivative or its ratios is not sufficient to
characterize space-time density structures over many cardiac
cycles.

For the cardiac ventricle the 12 quantities are input to a
genetic algorithm and are modeled to link 17 myocardial
segments in the ventricle (see FIGS. 10A and 10B) to various
tomographic imaging modalities of the heart (collected data).
The region boundaries are agnostic to the physiological sig-
nal, for example the clinical ECG landmarks commonly
referred to as P, Q, R, S, T, and U waves. The result is 17
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nonlinear nested sinusoidal Gaussian equations for the ven-
tricle that link the 12 dimensional space-time density metrics
to tomographic imaging modalities of the collected data.
These same ECG metrics can be used to localize, image, and
characterize architectural features and function of tissues, in
the example, the heart.

Ectopic foci can produce dynamic spatial dispersion of
repolarization and conduction block, initiating re-entrant
arrhythmias. Dynamic spatial dispersion of repolarization in
atrial and ventricular tissues can be detected and localized
using space-time analysis on the described 6 atrial and 12
ventricular 6 regions. These quantities are then inputted into
a genetic algorithm and are modeled to link regions of interest
to various tomographic images from collected data.

Spatial changes in the phase space matrix can be can be
computed using non-Fourier or Fourier multi-dimensional
fractional integral summation across all ECG leads on the
derived model to generate the dynamical space-time density
metrics. For cardiac ventricular tissue these metrics are mod-
eled using a genetic algorithm to link 17 non-linear nested
sinusoidal Gaussian equations previously described to the
commonly used 17-segment model shown in FIGS. 10A and
10B. Segments with altered architectural features and, or
function are identified and the degree of abnormality quanti-
fied, permitting assigning a probability of the said tissue
having a pathophysiological abnormality that can be charac-
terized as hypertrophy, atrophy, scar, ischemia, edema, fibro-
sis or another condition. For example, the probability of
regional ischemia in a ventricular segment can be identified
and quantified as shown in FIGS. 8A and 8B.

Having thus described several embodiments of the present
disclosure, it will be rather apparent to those skilled in the art
that the foregoing detailed disclosure is intended to be pre-
sented by way of example only, and is not limiting. Many
advantages for non-invasive method and system for localiza-
tion, imaging, and characterization of architectural features
and function of tissues have been discussed herein. Various
alterations, improvements, and modifications will occur and
are intended to those skilled in the art, though not expressly
stated herein. These alterations, improvements, and modifi-
cations are intended to be suggested hereby, and are within
the spirit and the scope of the present disclosure. Additionally,
the recited order of the processing elements or sequences, or
the use of numbers, letters, or other designations therefore, is
not intended to limit the claimed processes to any order
except as may be specified in the claims. Accordingly, the
present disclosure is limited only by the following claims and
equivalents thereto.

What is claimed is:

1. A method for localizing and characterizing both the
architectural features and function of cardiovascular tissues,
comprising the steps of

obtaining ECG data for the heart;

processing the ECG data to localize, image, and character-

ize architectural features and function of tissues without
use of other measuring devices or invasive procedures,
the processing including inputting N-dimensional ECG
data to a modified moving average filter to filter the
N-dimensional ECG data and performing a phase space
transformation process on the filtered N-dimensional
ECG data in which a dynamically rich system is syn-
chronized with a physiological signal; and

using phase information to determine a location of an

architectural feature or function of the tissues to display
an abnormality associated with the tissues in a 3-D
image.

2. The method of claim 1, wherein processing the ECG data
further comprises creating a phase space diagram, wherein
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the phase space diagram is used to localize, image, and char-
acterize the architectural features and the function of the
tissues.

3. The method of claim 2, further comprising modeling
phase space information on a reconstructed 3-D model to
localize and to characterize the architectural features and the
function of the tissues.

4. The method of claim 1, wherein the ECG data comprises
at least one heart beat cycle and wherein the abnormality in
the heart can be detected within a predetermined time interval
and wherein the predetermined time interval is used to local-
ize and to characterize the architectural features and the func-
tion of the tissues.

5. The method of claim 4, wherein the cardiac cycle cor-
responds to a vector sum electrical activation pathway
through the heart, the method further comprising using the
pathway with at least 24 dimensional dynamical phase space
density information to determine the location and to charac-
terize the architectural features and the function of the tissues.

6. The method of claim 4, further comprising locating and
index the abnormality or pathologic cardiovascular tissue to a
library of imaging modalities based on mining and linking
ECG’s dynamical phase space density information or other
cardiovascular physiological data to associated imaging
modalities.

7. The method of claim 4, wherein the predetermined time
period is at least 50 seconds and typically from 100 and 700
seconds.

8. The method of claim 1, wherein the phase space trans-
formation process magnifies dynamic features of the filtered
N-dimensional ECG data.

9. The method of claim 1, further comprising synchroniz-
ing the filtered N-dimensional ECG data with a Rossler sys-
tem or other quasi-periodic dynamically rich differential
equations.

10. The method of claim 1, further comprising determining
a dictionary that spans the input ECG data, wherein the dic-
tionary is a family of waveforms that is used to decompose the
input ECG data.

11. The method of claim 10, further comprising determin-
ing:

a sparse model from the dictionary for the physiological
signal under study, the determining being an iterative
process that, at each step, chooses a dictionary atom that
best correlates with the signal;

continuing the iterative process until a pre-defined stop-
ping condition occurs; and

determining coefficients of selected atoms.

12. The method of claim 11, further comprising correlating
the ECG data with all atoms to select a best atom in each
iteration in order to minimize a pre-defined cost function that
quantifies a distance between the model and the target wave-
form.

13. The method of claim 11, further comprising represent-
ing an output of the iterative process as a 3-D phase space plot,
wherein the 3-D phase space plot illustrates cardiac electrical

10

15

25

30

35

40

45

50

55

14

conduction patterns, and associated alterations in tissue
architecture, structure and function.

14. The method of claim 11, further comprising:

extracting different subspaces from the derived model; and

extracting predetermined subspaces that represent a

dynamical abnormality in the tissue architecture, struc-
ture and function.
15. The method of claim 1, further comprising substituting
continuous blood pressure, pulse oximetry, or other physi-
ologic data for the ECG data.
16. The method of claim 1, further comprising associating
an effectiveness of patient therapies that includes using the
model results to guide a treatment or intervention.
17. The method of claim 1, further comprising modeling
the ECG data to link 17 myocardial segments in the ventricle
to all imaging modalities of the heart.
18. A method for localizing and characterizing both the
architectural features and function of cardiovascular tissues,
comprising the steps of
obtaining ECG data for the heart;
processing the ECG data to localize, image, and character-
ize architectural features and function of tissues without
use of other measuring devices or invasive procedures;

using phase information to determine a location of an
architectural feature or function of the tissues to display
an abnormality associated with the tissues in a 3-D
image;
using at least 24 variables corresponding to the at least 24
dimensional dynamical space density as terms that are
selected in nonlinear combinations selected from a list
comprising sin, cos, cos h, sin h, Rossler functions,
product, division, addition, subtraction, Gaussian, expo-
nential functions and become candidates based on the
genetic operators selected from a second list comprising
inheritance, mutation, selection, and crossover;

generating offspring function combinations that are evalu-
ated and optimized by freezing all but one variable;

optimizing an unfrozen variable to reduce an absolute error
of a model;

optimizing in a sequence, the other variables until all at

least 24 variable have a lowest error;

using a fitness function to determine a solution having a

lowest absolute error; and

continuing until a highest-ranking solution’s fitness has

reached a plateau such that successive iterations no
longer produce better results.

19. The method of claim 18, further comprising:

using the at least 24 variables in a genetic algorithm; and

modeling, using the at least 24 variables to link 17 myo-

cardial segments in the ventricle to tomographic imag-
ing modalities of the heart.

20. The method of claim 1, further comprising modeling
the ECG data to link 17 myocardial segments in the ventricle
to all imaging modalities of the heart.
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